If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+40x-250=0
a = 1; b = 40; c = -250;
Δ = b2-4ac
Δ = 402-4·1·(-250)
Δ = 2600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2600}=\sqrt{100*26}=\sqrt{100}*\sqrt{26}=10\sqrt{26}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-10\sqrt{26}}{2*1}=\frac{-40-10\sqrt{26}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+10\sqrt{26}}{2*1}=\frac{-40+10\sqrt{26}}{2} $
| -2n-21=-(n-7)-5n | | |5x-3|=|7x+1| | | -6x-55=137+10x | | 0.1x^2+0.3x-1=0 | | —31-4x=—5-5(1+5x) | | 4x(x/2-x)-(4x-2x)=20 | | 7a/6=7 | | 4+5g=-6 | | 12v-9/2=1/4 | | 0.07(2t+7)=0.14(t-3)+0.91 | | 17)x2=49 | | A=1/2(1+x) | | 256=211-y | | 8y*10=80 | | 5q+6=3q-2+q | | 3(2x+1)+1/4(3x)=9 | | (2x+8)=(3x-47) | | 3w−65=175 | | 3D+8=2d=17 | | g/–4+ 11=10 | | 3=2m−7 | | 2r+15=35 | | 3+2k=12 | | 9;x+5=86 | | 8=34a+14 | | 1/2m2+2m=4 | | -52=x/9 | | 4x-6÷7=2 | | (3x+2)²x+5=(3x+2)x-2 | | m÷6-7=14 | | T^2-8t=25 | | x2-5x+20=5x-1 |